87 research outputs found

    Variational Wave Functionals in Quantum Field Theory

    Get PDF
    Variational (Rayleigh-Ritz) methods are applied to local quantum field theory. For scalar theories the wave functional is parametrized in the form of a superposition of Gaussians and the expectation value of the Hamiltonian is expressed in a form that can be minimized numerically. A scheme of successive refinements of the superposition is proposed that may converge to the exact functional. As an illustration, a simple numerical approximation for the effective potential is worked out based on minimization with respect to five variational parameters. A variational principle is formulated for the fermion vacuum energy as a functional of the scalar fields to which the fermions are coupled. The discussion in this paper is given for scalar and fermion interactions in 1+1 dimensions. The extension to higher dimensions encounters a more involved structure of ultraviolet divergences and is deferred to future work

    Interquark Potential in Schrodinger Representation

    Get PDF
    Static charges are introduced in Yang-Mills theory via coupling to heavy fermions. The states containing static color charges are constructed using integration over gauge transformations. A functional representation for interquark potential is obtained. This representation provides a simple criterion for confinement.Comment: 9pp., Late

    Center Vortices, Nexuses, and Fractional Topological Charge

    Get PDF
    It has been remarked in several previous works that the combination of center vortices and nexuses (a nexus is a monopole-like soliton whose world line mediates certain allowed changes of field strengths on vortex surfaces) carry topological charge quantized in units of 1/N for gauge group SU(N). These fractional charges arise from the interpretation of the standard topological charge integral as a sum of (integral) intersection numbers weighted by certain (fractional) traces. We show that without nexuses the sum of intersection numbers gives vanishing topological charge (since vortex surfaces are closed and compact). With nexuses living as world lines on vortices, the contributions to the total intersection number are weighted by different trace factors, and yield a picture of the total topological charge as a linking of a closed nexus world line with a vortex surface; this linking gives rise to a non-vanishing but integral topological charge. This reflects the standard 2\pi periodicity of the theta angle. We argue that the Witten-Veneziano relation, naively violating 2\pi periodicity, scales properly with N at large N without requiring 2\pi N periodicity. This reflects the underlying composition of localized fractional topological charge, which are in general widely separated. Some simple models are given of this behavior. Nexuses lead to non-standard vortex surfaces for all SU(N) and to surfaces which are not manifolds for N>2. We generalize previously-introduced nexuses to all SU(N) in terms of a set of fundamental nexuses, which can be distorted into a configuration resembling the 't Hooft-Polyakov monopole with no strings. The existence of localized but widely-separated fractional topological charges, adding to integers only on long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure

    Variational Principle in the Algebra of Asymptotic Fields

    Full text link
    This paper proposes a variational principle for the solutions of quantum field theories in which the ``trial functions'' are chosen from the algebra of asymptotic fields, and illustrates this variational principle in simple cases.Comment: 15 pages, Latex, no figure

    Low-Dimensional Long-Range Topological Charge Structure in the QCD Vacuum

    Get PDF
    While sign-coherent 4-dimensional structures cannot dominate topological charge fluctuations in the QCD vacuum at all scales due to reflection positivity, it is possible that enhanced coherence exists over extended space-time regions of lower dimension. Using the overlap Dirac operator to calculate topological charge density, we present evidence for such structure in pure-glue SU(3) lattice gauge theory. It is found that a typical equilibrium configuration is dominated by two oppositely-charged sign-coherent connected structures (``sheets'') covering about 80% of space-time. Each sheet is built from elementary 3-d cubes connected through 2-d faces, and approximates a low-dimensional curved manifold (or possibly a fractal structure) embedded in the 4-d space. At the heart of the sheet is a ``skeleton'' formed by about 18% of the most intense space-time points organized into a global long-range structure, involving connected parts spreading over maximal possible distances. We find that the skeleton is locally 1-dimensional and propose that its geometrical properties might be relevant for understanding the possible role of topological charge fluctuations in the physics of chiral symmetry breaking.Comment: 4 pages RevTeX, 4 figures; v2: 6 pages, 5 figures, more explanations provided, figure and references added, published versio

    Cut Diagrams for High Energy Scatterings

    Get PDF
    A new approach is introduced to study QCD amplitudes at high energy and comparatively small momentum transfer. Novel cut diagrams, representing resummation of Feynman diagrams, are used to simplify calculation and to avoid delicate cancellations encountered in the usual approach. Explicit calculation to the 6th order is carried out to demonstrate the advantage of cut diagrams over Feynman diagrams.Comment: uu-encoded file containing a latex manuscript with 14 postscript figure

    Rigorous QCD-Potential for the ttˉt\bar{t}-System at Threshold

    Full text link
    Recent evidence for the top mass in the region of 160 GeVGeV for the first time provides an opportunity to use the full power of relativistic quantum field theoretical methods, available also for weakly bound systems. Because of the large decay width \G of the top quark individual energy-levels in "toponium" will be unobservable. However, the potential for the ttˉt\bar{t} system, based on a systematic expansion in powers of the strong coupling constant \a_s can be rigorously derived from QCD and plays a central role in the threshold region. It is essential that the neglect of nonperturbative (confining) effects is fully justified here for the first time to a large accuracy, also just {\it because} of the large \G. The different contributions to that potential are computed from real level corrections near the bound state poles of the ttˉt\bar{t}-system which for \G \ne 0 move into the unphysical sheet of the complex energy plane. Thus, in order to obtain the different contributions to that potential we may use the level corrections at that (complex) pole. Within the relevant level shifts we especially emphasize the corrections of order O(\a_s^4 m_t) and numerically comparable ones to that order also from electroweak interactions which may become important as well.Comment: 36 pages (mailer uncorrupted version), TUW-94-1

    Calculable observables in quantum chromodynamics I

    No full text
    A simple heuristic proof of infrared finiteness to all orders of perturbation theory is given for a class of observables in massless field theories including quantum chromodynamics. This class includes the average energy E( Omega ) carried into a given solid angular region Omega by final-state particles in e/sup +/e/sup -/ annihilation and its positive integral powers; it also includes energy correlations between different angular regions: E( Omega /sub 1/)E( Omega /sub 2/) ... E( Omega /sub N/). It is argued that appropriately defined inclusive jet cross sections are infrared finite, even for vanishing fractional energy resolutions. Extensions to lepton-hadron and hadron- hadron collisions are described. (8 refs)
    corecore